您现在的位置:网站首页>紧固件知识

紧固件加工时预防氢脆问题的注意事项

时间:2013/1/11 来源:http://www.jzkls.com/
    所谓氢脆,是指氢原子侵入基体材料中而引起的材料延迟失效断裂。氢脆通常表现为应力作用下的延迟断裂现象。其主要原理是将钢铁基体中一些易于渗入氢原子的位置形容为“陷阱”,这些位置包括钢铁结构中的晶界、位错中心、非金属夹杂物及碳化物等与钢铁原子之间形成的固-固界面,还有应力中心等。当活动氢原子进入这些“陷阱”,即被束缚而成为非活跃氢原子。氢原子在陷阱位置的聚集将使材料的断裂应力下降,应力集中部位将形成裂纹,裂纹逐渐扩展直至断裂发生,此即为氢脆引起的延迟断裂现象。氢脆一般发生在零件受到静态载荷的条件下,紧固件在安装后可能在数小时或此后更长的时间内出现断裂。而零件承受动态高应变载荷时,例如在进行拉伸试验时,载荷在短时间内迅速增加较后达到零件拉力载荷极限而发生断裂,则不易发生氢脆。因此判断氢脆不宜采取拉伸试验的方法,具体方法将在后文阐述。
    按陷阱的深度不同,陷阱可分为可逆和不可逆两种,这取决于陷阱束缚能的强弱。当陷阱束缚能较弱,即陷阱比较浅,氢原子可轻易摆脱陷阱的束缚重新成为活跃氢原子,这种陷阱称为可逆陷阱,也可称为引力陷阱,这种陷阱的束缚能主要来自电场、应力场、温度梯度或非典型的化学势,这些束缚能不是零件自身存在的,一般是外界环境对零件的影响,当外界环境变化束缚能消失,氢原子可能会逃逸出陷阱。当氢原子在基体内扩散时,可逆陷阱实际上既是氢原子的巢穴,也可转变为释放氢原子的来源。
    不可逆陷阱的束缚能较强,陷阱比较深,氢原子一旦进入其中就很难再逃逸出来,例如大角度晶界、夹杂物或碳化物与钢铁原子之间形成的固-固界面、孔穴等等位置,这种陷阱是物理性的,也可称为物理陷阱,它只能成为氢原子的巢穴。
    一、过热现象 我们知道热处理过程中加热过热较易导致奥氏体晶粒的粗大,使零件的机械性能下降。
    1.一般过热:加热温度过高或在高温下保温时间过长,引起奥氏体晶粒粗化称为过热。粗大的奥氏体晶粒会导致钢的强韧性降低,脆性转变温度升高,增加淬火时的变形开裂倾向。而导致过热的原因是炉温仪表失控或混料(常为不懂工艺发生的)。过热组织可经退火、正火或多次高温回火后,在正常情况下重新奥氏化使晶粒细化。
    2.断口遗传:有过热组织的钢材,重新加热淬火后,虽能使奥氏体晶粒细化,但有时仍出现粗大颗粒状断口。产生断口遗传的理论争议较多,一般认为曾因加热温度过高而使MnS之类的杂物溶入奥氏体并富集于晶接口,而冷却时这些夹杂物又会沿晶接口析出,受冲击时易沿粗大奥氏体晶界断裂。
    3.粗大组织的遗传:有粗大马氏体、贝氏体、魏氏体组织的钢件重新奥氏化时,以慢速加热到常规的淬火温度,甚至再低一些,其奥氏体晶粒仍然是粗大的,这种现象称为组织遗传性。要消除粗大组织的遗传性,可采用中间退火或多次高温回火处理。
    二、过烧现象 加热温度过高,不仅引起奥氏体晶粒粗大,而且晶界局部出现氧化或熔化,导致晶界弱化,称为过烧。钢过烧后性能严重恶化,淬火时形成龟裂。过烧组织无法恢复,只能报废。因此在工作中要避免过烧的发生。
    三、脱碳和氧化 钢在加热时,表层的碳与介质(或气氛)中的氧、氢、二氧化碳及水蒸气等发生反应,降低了表层碳浓度称为脱碳,脱碳钢淬火后表面硬度、疲劳强度及耐磨性降低,而且表面形成残余拉应力易形成表面网状裂纹。 加热时,钢表层的铁及合金与元素与介质(或气氛)中的氧、二氧化碳、水蒸气等发生反应生成氧化物膜的现象称为氧化。高温(一般570度以上)工件氧化后尺寸精度和表面光亮度恶化,具有氧化膜的淬透性差的钢件易出现淬火软点。
    为了防止氧化和减少脱碳的措施有:工件表面涂料,用不锈钢箔包装密封加热、采用盐浴炉加热、采用保护气氛加热(如净化后的惰性气体、控制炉内碳势)、火焰燃烧炉(使炉气呈还原性)
    四、氢脆现象 高强度钢在富氢气氛中加热时出现塑性和韧性降低的现象称为氢脆。出现氢脆的工件通过除氢处理(如回火、时效等)也能消除氢脆,采用真空、低氢气氛或惰性气氛加热可避免氢脆。